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Abstract: While mixed-species cover crops are gaining worldwide popularity, their utility in the
‘plough-out’ period in tropical sugar cane systems has not been investigated. Field trials investigating
weed suppression (one season only), biomass production and nitrogen accumulation of single-species
and mixed-species cover crops were conducted over two seasons on a commercial sugarcane farm
in the Australian tropics. Mixed-species cover crops showed strong weed suppression, and were
among the top treatments for biomass production each year, but did not yield the highest biomass in
either season. Sunn hemp (Crotalaria juncea cv. Global sunn) produced the most biomass in the drier-
than-average 2016–2017 season (>10 t dry matter ha−1), while soybean (Glycine max cv. Leichardt)
produced the most biomass (5.3 t dry matter ha−1) in the wetter-than-average 2018–2019 season,
highlighting the influence of seasonal conditions on species’ biomass production. The inclusion of
multiple species in a short-term cover crop in the tropics where extreme weather events can occur
can thus be seen as a risk mitigation strategy given the risk of failure of any given species in a
given season.

Keywords: tropical legumes; nitrogen fixation; sunn hemp; soybean; tillage radish

1. Introduction

Sugarcane (Saccharum officinarum) is cultivated on an estimated 27 million ha across the
globe [1], predominantly in tropical regions. The total annual harvested area of sugarcane
in Australia is around 400,000 ha, with around 35 Mt biomass harvested. At the start
of a production cycle in Australia, sugarcane is established from vegetative propagules
known as ‘billets’ or ‘setts’ and the first crop is termed ‘plant cane’. This crop is typically
harvested after a year and the sugarcane plant then regrows from the roots and crown
(‘stool’), remaining in the soil to produce a ’ratoon crop’. Sugarcane in the Australian
tropics is typically harvested annually with four or more ratoon crops grown before cane
is removed [2]. While ratoon crops can have lower yields than plant cane crops, the cost
of production is typically lower [3]. However, the continual production of sugarcane in
the same field over time has led to observations of yield decline, which appears to be
related to a decline in soil health and build-up of pathogens associated with the sugarcane
monoculture [4].

One potential management option to address yield decline in sugarcane is the in-
troduction of rotation crops in the fallow period between plough-out and replanting of
subsequent cane crops [5]. Potential benefits of rotation crops or cover crops in the summer
wet season in the Australian tropics during the sugarcane fallow period include improved
groundcover and protection against erosion, reduced NO3

− leaching, increased carbon (C)

Agriculture 2021, 11, 640. https://doi.org/10.3390/agriculture11070640 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-8832-360X
https://orcid.org/0000-0001-5386-6818
https://doi.org/10.3390/agriculture11070640
https://doi.org/10.3390/agriculture11070640
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11070640
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture11070640?type=check_update&version=2


Agriculture 2021, 11, 640 2 of 12

inputs into soils and improvements in soil biological populations related to cane health. A
number of studies have investigated short-term cover crops or longer-term break crops
over 9–42 months during the sugarcane cycle [2,6], but most have focussed on fallow
legume crops to break the monocot monoculture and improve soil microbial populations
related to cane health [5]. More recent studies have investigated the influence of fallow
legume crops on nitrogen (N) supply to subsequent cane crops [7,8] or the capacity of
specific rotation crops to suppress pests of sugarcane, including nematodes (e.g., [9]).

Leaching of NO3
− during the fallow period has been observed in tropical sugarcane

systems [10], being both a loss of resources and also a potential pollutant. There is increas-
ing evidence that grass–legume mixtures are proficient at minimising NO3

− leaching [11]
through capturing and storing N in biomass, potentially available to the cane crop later
in the season following the mineralisation of biomass. Indeed, higher cover crop biomass
production has been positively correlated with a reduction in NO3

− leaching [12]. Ecologi-
cal theory suggests that cover crop mixes, due to diversity of plants, could produce more
biomass than single-species plantings due to complementarity of resource use [13], which
could be important for N cycling and accumulation of soil organic carbon.

We are unaware of any published studies on dual- or mixed-species cover crops in
tropical sugarcane systems, but it is possible that they may play a role in reducing NO3

−

leaching and increasing soil C in these systems. The present study was therefore undertaken
to investigate biomass production and N accumulation in single-species and mixed-species
cover crops, and N fixation in leguminous cover crops. One potential issue of mixed-
species cover crops in sugarcane systems is a lack of herbicide options to control weeds
compared to single-species cover crops, where herbicide options are typically available.
In particular, the inclusion of grass species in cover crop mixes can preclude the use of
grass-selective herbicides that are typically used to control volunteer cane plants during the
fallow period. The present study therefore also examined potential weed suppression of
mixed-species cover crops compared to a range of single-species cover crops in the first of
two trial seasons. It was hypothesised that mixed-species cover crops would produce more
biomass than single-species cover crops, and would therefore be more weed suppressive.

2. Materials and Methods

Field trials were established in separate fields on the same commercial sugarcane farm
near Ingham, Queensland, Australia (18◦37′26.84′′ S, 146◦10′30.80′′ E), in December 2016
and December 2018, to investigate weed suppression (trial 1, 2016–2017 only), biomass pro-
duction and N accumulation (both seasons) and legume N fixation (trial 2, 2018–2019 only)
in a range of single-species and mixed-species cover crops in the traditional plough-out pe-
riod between sugarcane crops. Sugarcane has been grown on the farm for >100 years, with
a controlled-traffic permanent bed system on 1.83 m row spacing for the past 14–16 years.
Raised beds enable drainage in furrow areas following heavy rainfall, and also allow wheel
traffic to be concentrated in the furrow so soil in beds (where sugarcane and break crops
are grown) is not compacted by machinery. The farm has been ‘green harvested’ with trash
retention (i.e., no burning, with sugarcane leaf material left on the soil) since 1985. Trials in
both fields were laid out using a randomised block design (n = 3) with plots being three
beds wide (5.49 m × 20 m long). No herbicides were used to control weeds in either trial
due to potential damage to neighbouring susceptible cover crops.

2.1. Trial 1

The soil type was a fluvisol [14] and selected chemical properties of the top 0–15 cm
layer are given in Table 1 (samples analysed at Qld Department of Environment and Science
Chemistry Centre). Prior to the establishment of the trial, the site was disked twice to chop
up sugarcane trash into smaller pieces and to incorporate 4 t ha−1 of a lime/dolomite blend
containing 32% Ca and 3% Mg (Miriwinni Lime Pty Ltd., Miriwinni, Australia). A bed
renovator was used to form beds prior to cover crop seeds being manually broadcast onto
the surface of each plot on 24 December 2016 before being incorporated using a wavey disc
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cultivator. Cover crop treatments and seeding rates are given in Table 2. Legumes were
inoculated with appropriate rhizobia prior to sowing (Table 2). Temperature and rainfall
during the trial period are shown in Figure 1a.

2.2. Trial 2

A second trial adjacent to trial 1 was established on 21 December 2018 (seeding
rates are given in Table 2). Temperature and rainfall during the trial period are shown in
Figure 1b. Some species used in trial 1 were omitted in trial 2 due to poor growth in 2016–
2017 (e.g., canola) or lack of available seed, with new species introduced to replace these
treatments (burgundy bean, rice). Given the proximity of broadleaf and monocot plots,
weeds were controlled by hand on 27th and 28th of February 2019 in single-species plots. A
significant wet weather period was experienced in early February 2019 (Figure 1b) and cow-
peas in the single-species plots died off due to Phytophthora root rot caused by waterlogging.

Table 1. Key chemical properties of 0–15 cm layer of soil at trial 1 and trial 2.

Property Units Trial 1 Trial 2

Organic carbon % 1.29 1.30
pH (1:5 H2O) pH units 4.6 5.0

EC dS m−1 0.04 0.04
Colwell P mg kg−1 NA 97

BSES P mg kg−1 124 120
Effective CEC cmol+ kg−1 4.9 5.8

Base cations
Calcium cmol+ kg−1 1.0 2.7

Magnesium cmol+ kg−1 0.40 0.56
Potassium cmol+ kg−1 0.26 0.36

Sodium cmol+ kg−1 0.04 0.08
Aluminium cmol+ kg−1 3.2 1.59

DPTA-extractable
micronutrients

Zinc mg kg−1 1.89 0.6
Manganese mg kg−1 29.1 8.7

Iron mg kg−1 638 221
Copper mg kg−1 0.94 0.8
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Table 2. Cover crop treatments and seeding rates in trial 1 and trial 2.

Treatment Rhizobium Seeding Rate (kg ha−1)

Trial 1 Trial 2

Soybean (Glycine max) cv. Leichardt Group H 40 40
Soybean cv. Kuranda Group H NA 40
Soybean cv. Mossman Group H NA 40
Sunflower (Helianthus annuus) cv. Grey stripe NA 2 2
Sunn hemp (Crotalaria juncea) cv. Global sunn Group M 20 20
Lablab (Lablab purpureus) cv. Rongai Group J 25 25
Lablab cv. Rongai 527 Group J 25 Not sown
Cowpea (Vigna unguiculata) cv. Ebony Group I 30 30
Desmanthus (Desmanthus virgatus) cv. Sugarbush CB3126 8 Not sown
Pigeon pea (Cajanus cajan) cv. ASSG sunrise. Group J 30 30
Velvet bean (Mucuna pruriens) cv. Dominator Group M Not sown 3
Radish (Raphanus sativus) cv. Daikon NA Not sown 9
Jap millet (Echinochloa esculenta) cv. Japanese Barnyard Millet. NA Not sown 6
Rice (Oryza sativa L.) cv. Doongara NA Not sown 70
Canola (Brassica napus L.) cv. Hyola 504RR NA 5 Not sown
Burgundy bean (Macroptilium bracteatum) cv. B1 CB1717 Not sown 6
Mix A: soybean cv. Leichardt, desmanthus cv. Sugarbush, cowpea cv.
Ebony, sunflower cv. White stripe Mix of Group H, I and CB3126 Soybean 8; desmanthus 8;

cowpea 8 sunflower 7 Not sown

Mix B: sunn hemp cv. Global Sunn, soybean cv. Leichhardt, cowpea cv.
Ebony, sunflower cv. White stripe Mix of Group H, I and M Soybean 8; sunn hemp 7;

cowpea 8; sunflower 7 NA

Mix C: soybean cv. Leichardt, lablab cv. Rongai, cowpea cv. Ebony Mix of Group H, I and J Soybean 10; lablab 10; cowpea 10 NA

Mix 1: soybean cv. Leichardt, cowpea cv. Ebony, cowpea cv. Meringa, sunn
hemp cv. Global sunn, lablab cv. Rongai Mix of Group H, I, J and M NA

Soybean 7.5;
cowpea Ebony 7.5;

cowpea Meringa 7.5;
sunn hemp 7.5;

lablab Rongai 7.5

Mix 2: soybean cv. Leichardt, cowpea cv. Ebony, sunn hemp cv. Global
Sunn, pigeon pea cv. ASSG sunrise, sunflower cv. White stripe, Jap millet,
radish cv. daikon

Mix of Group H, I and M NA

Soybean 4;
cowpea 4;

sunn hemp 4;
pigeon pea 4; sunflower 4;

Jap millet 5;
radish 5

Mix 3: cowpea cv. Ebony, cowpea cv. Meringa, lablab cv. Rongai Mix of Group I and J NA
Cowpea Ebony 7.5;

cowpea Meringa 7.5;
lablab Rongai 7.5
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Figure 1. Daily rainfall and maximum temperature data for (a) trial 1 in the 2016–2017 season; and (b) trial 2 in the
2018–2019 season.

2.3. Measurements

For trial 1, the percent weed cover was assessed on 13 March 2017 by giving each
plot a percentage rate of weeds. This was done by visibly inspecting the entire plot and
estimating the proportion of biomass comprised of weeds (i.e., species that were not sown
in that plot).

For biomass production and nutrient contents, a 1 m length of the centre row (of
three) in the middle raised bed was harvested manually from each plot prior to cover crop
termination at each trial. Field site 1 biomass was sampled on 13 March 2017 and field site 2
biomass was sampled on 12 April 2019. Fresh weight was recorded in the field using digital
scales, and samples were transported to a shed and roughly chopped/homogenised using a
mulcher. A 500 g subsample of mulched material was then dried to determine % dry matter.
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Plot dry weight was calculated by multiplying the field fresh weight by the % dry matter of
the subsample. Cover crop biomass per plot was determined by multiplying the total plot
biomass by the % cover crop from the weed estimates. Dried plant material was roughly
ground and a subsample finely ground for subsequent nutrient analysis. Approximately
0.2 g ground material was digested in aqua regia in a MARS Xpress microwave oven (CEM
Corporation, Matthews, NC, USA) and concentrations of Mg, Ca, P, K, Zn, Mn, Fe, and Cu
were quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES
4300D, Perkin Elmer, Waltham, MA, USA). Concentrations of N and S in 0.2 g subsamples
were quantified using a LECO TruMAC CNS analyser. All biomass and N accumulation
data were expressed on a per ha basis.

At field site 2 (2018–2019), % N derived from the atmosphere (%Ndfa) in legumes
and biological N fixation were quantified using the 15N natural abundance method [15].
Nitrogen isotope ratios in legumes and non-legumes (radish, Jap millet, rice and sunflower)
were measured using a Thermo Delta V plus isotope ratio mass spectrometer (Thermo Sci-
entific, Bremen, Germany) after combustion on a Thermo Flash EA 1112 elemental analyser
(Thermo Scientific, Bremen, Germany). The %Ndfa in legume shoots was calculated as per
Shearer and Kohl [15]:

%Nd f a =
100(δ15N reference plant− δ15N legume(

δ15N reference plant− B
) (1)

where ‘δ15N reference plant’ was the average δ15N of all non-legume shoot samples
(+3.0 ‰ ± 0.5) and B values were: cowpea −1.61 ‰ [16], sunn hemp −1.08 ‰ (Un-
kovich, et al. 2008), velvet bean −1.82 ‰ [16], soybeans (all varieties) −1.70 ‰ [17],
burgundy bean −1.40 ‰ [18], pigeon pea −1.12 ‰ [16] and lablab −1.09 ‰ [16]. Fixed N
for each legume was calculated by multiplying the %Ndfa by the respective shoot biomass.

2.4. Statistical Analyses

Shoot biomass and N accumulation data (both trials) and percent weed data (2016
trial) were analysed using a two-way ANOVA, fitting cover crop treatment and block as
factors. Data transformation (log [10]) was undertaken on cover crop N content data in
trial 1 to satisfy normality assumptions. Data were analysed in Genstat Release 19.1 [19].
Significance of cover crop treatment differences were tested using a Duncan’s multiple
range test.

3. Results
3.1. Trial 1 (2016–2017 Season)

Around 780 mm of rainfall fell during the 11-week cover crop-growing period (Figure 1a).
This is less than the historical average rainfall of >1000 mm for this period (Bureau of
Meteorology 2020). No weeds were observed in soybean cv. Leichardt and cowpea single-
species treatments or in any of the mixed-species cover crops (Figure 2a). In contrast,
sunflower and canola plots were dominated by weeds to the extent that when weeds were
visually assessed on 13 March 2017, no canola plants were observed. Desmanthus plots
also had >50% weeds by visual observation.



Agriculture 2021, 11, 640 7 of 12

Figure 2. Visually estimated percentage of weeds in plots (a), shoot biomass production (b) and N content (c) in single-
species and mixed-species cover crop treatments in the 2016–2017 season. Error bars represent SEM (n = 3). Means not
followed by a common letter are significantly different at p ≤ 0.05. Note that all biomass in canola plots, and a large
proportion of biomass in sunflower and desmanthus plots, was from weed species.

Cover crop biomass production was highest in sunn hemp plots (>10 t ha−1) and was
lowest in the plots dominated by weeds (canola, sunflower and desmanthus) and lablab cv.
Rongai 527. Nitrogen accumulation in shoots was significantly higher in sunn hemp than
all other treatments (Figure 2b). There was no significant difference in N accumulation
between other legume and mixed-species treatments, with the exception of desmanthus,
which was significantly lower than all but the lablab cv. Rongai 527 and cowpea treatments,
likely due to the high proportion of (non-leguminous) weeds in this treatment (Figure 2a,c).
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3.2. Trial 2 (2018–2019 Season)

The site received >2500 mm rainfall during the trial period (Figure 1b). It was noted
that the cowpeas in the single-species plots and in all mixed-species plots, and sunflow-
ers in mix 2, died off at the onset on heavy rainfall and soil waterlogging, while other
species persisted. Biomass production in tillage radish was significantly lower than all
other treatments except sunflower, which had died prematurely due to wet weather. All
treatments other than the radish and sunflower produced between 3 and 4.5 t biomass ha−1

(Figure 3a). In contrast to the dry 2016–2017 season where sunn hemp yielded significantly
(p < 0.05) more biomass than soybean cv. Leichardt (10.8 vs. 4.4 t ha−1), in the wet 2018–
2019 season biomass yields of soybean cv. Leichardt and sunn hemp (5.3 vs. 4.3 t ha−1)
were not significantly different.

Figure 3. Shoot biomass production (a) and N content (b) in single-species and mixed-species cover crop treatments in
trial 2. Error bars represent SEM (n = 3). Means not followed by a common letter are significantly different at p ≤ 0.05.
Note: cowpea plots contained a mixture of weeds and decayed cowpea residue as cowpeas died in February 2019 due to
wet weather.

Nitrogen content in shoots (N accumulation) was generally higher in the legume and
mixed-species treatments (which contained legume species) than in non-leguminous dicot
and grass species (Figure 3b). Of the legumes, N content of shoots was lowest in sunn
hemp, reflecting the lower tissue N concentrations (Table S1).
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In legumes, %Ndfa was highest in pigeon pea (around 90%) but was only 45–50%
on average in soybean cv. Mossman and Leichardt, sunn hemp and lablab (Table 3). The
maximum amount of N fixed in shoots was 68 kg N ha−1 in both soybean cv. Leichardt and
pigeon pea, with the lowest shoot-fixed N in sunn hemp with only 29 kg N ha−1 (Table 3).

Table 3. Percent nitrogen derived from atmosphere (%Ndfa) and total fixed nitrogen in shoots of
legumes grown in trial 2 (2018–2019). Means are shown ± SEM (n = 3).

Species %Ndfa (%) Fixed N in Shoots
(kg ha−1)

Soybean cv. Leichardt 52 ± 10 68 ± 11
Soybean cv. Kuranda 69 ± 4 49 ± 14
Soybean cv. Mossman 55 ± 6 49 ± 1

Sunn hemp cv. Global Sunn 47 ± 12 29 ± 8
Lablab cv. Rongai 45 ± 12 41 ± 21

Pigeon pea cv. ASSG Sunrise 90 ± 3 68 ± 8
Velvet bean cv. Dominator 61 ± 6 45 ± 10

Burgundy bean cv. B1 67 ± 12 49 ± 14

Note: No nitrogen fixation measurements were taken on cowpea plots because cowpeas had decayed following
waterlogging in early February 2019.

4. Discussion

While a number of studies have investigated break crops, typically legumes, in the
traditional fallow period in tropical cane systems (e.g., [2]), potential benefits of mixed-
species cover crops in these systems have not been explored. Data from trial 1 (2016–2017)
indicated that mixed-species cover crops were highly competitive against weeds compared
to some of the single-species cover crops, including sunflowers, canola and desmanthus.
Further, biomass production of mixed-species plots was always among the highest of
all treatments, although never greater than the highest single-species treatment in either
year. These findings are consistent with a number of studies in temperate environments
that indicate while mixed-species cover crops show strong weed suppression and high
biomass compared to many single-species treatments, they rarely rank higher than the
top performing single-species treatment in any given site or season [12,20–22]. This is not
attributed to ‘over-yielding’ as a result of niche complementarity in the mixed-species
treatments, since at least one of the individual components of the mixed species produced
more biomass as a single species than the mixed-species treatments in each season; for
example, sunn hemp as a single species in trial 1 and soybean cv. Leichardt as a single
species in trial 2. Rather, it appears that different species thrive in different seasons, and
inclusion of multiple species in a plot mitigates the risk of failure of any given species in a
given season, particularly in seasons with extreme weather events [20]. The poor growth
of cowpeas following the extremely wet weather in trial 2 (2019 season; >2000 mm in one
month) highlighted this point. While the death of cowpeas in the single-species plots led
to weed infestation, death of cowpeas in the mixed-species plots did not result in weed
infestation, as other species (e.g., lablab in mix 3) continued to thrive and maintained weed
suppression. From a practical point of view, the strong weed suppression by mixed-species
cover crops suggests that weed control (lack of available herbicide options) should not be
a barrier to any potential adoption of mixed-species cover crops in tropical cane systems.
In contrast, poor weed suppression in single-species canola, sunflower and desmanthus
treatments in trial 1 is problematic due to perceived risk of problem weeds setting seed
and the need for selective herbicides to remove key broadleaf and grass weeds. Farmer
adoption of mixed-species cover crops is therefore a more likely prospect if seed costs are
not prohibitive.

In a study in subtropical sugarcane systems, soybean crops grown across a range
of soil types during the fallow phase had %Ndfa values ranging from 75–91%, with the
exception of two crops that were waterlogged during early growth that had %Ndfa values
of around 30% [17]. The lower %Ndfa values in soybeans in the present study (52% in



Agriculture 2021, 11, 640 10 of 12

cv. Leichardt to 69% in cv. Kuranda) likely reflect the wet seasonal conditions that can
negatively impact both plant growth and rhizobia performance in soybean [23]. In contrast,
pigeon pea had an estimated %Ndfa of around 90%, suggesting that rhizobia were not
negatively impacted by the wet conditions. It is worth noting, however, that %Ndfa was
estimated using the 15N natural abundance method and several factors increased the chance
of error in these estimations. Firstly, the reference (non-N fixing) plants had an average
δ15N of +3.0 ± 0.5 ‰, and reference plant δ15N values < +4.0 ‰ increase the chance of
under or overestimation of %Ndfa [16]. Secondly, the B values used were obtained from
plants at mid-pod filling stages (16, 17, 18) while legumes in the field trial were sampled
between flowering and pod filling depending on the species. The use of B values from
growth stages earlier than mid pod filling has a limited impact on %Ndfa estimations
when reference plants have δ15N values > +4.0 ‰, but has a greater influence on %Ndfa
estimates as the δ15N values of reference plants approach those of the legumes tested [24].
Thus, it should be noted that the %Ndfa values measured provide only an estimate of the
biological N fixed by the legumes in trial 2.

Accumulation of N in cover crops reflects both the uptake of soil N, as well as N
acquired through biological N2 fixation in the case of legumes or mixed-species plots that
contain legumes. Dabney et al. [25] highlight the point that while grasses and other non-
legumes are efficient at scavenging N, their growth is often limited by N deficiency, and
hence growing a legume and non-legume in a cover crop mix often leads to greater biomass
production without sacrificing the N scavenging capacity. Lower N content in shoots of
grass and non-legume broadleaf cover crops in trial 2 compared to legume single-species
plantings and mixed-species treatments is consistent with this notion. In particular, the low
shoot N concentration (Table S1) and visible N deficiency symptoms in the single-species
radish plots (Figure S1) indicate that in high rainfall and leaching environments, growth
and N capture by non-legumes may indeed be limited by N deficiency. As per the biomass
accumulation, N accumulation in mixed-species plots was always among the highest of
all treatments, although never greater than the highest (legume) single-species treatment
in either year (Figures 1c and 2b). However, the fact that the best performing legume in
terms of N accumulation was different between trial 1 and trial 2 again indicates the utility
of mixed-species plots with multiple legume species in mitigating the risk of failure of a
particular legume species in a given season. While legume and mixed plots had the most
N in shoots, which may indicate scavenging of N and reduced leaching, a key question
remains around the fate of this N after cover crop termination. Previous studies indicate
rapid turnover of residue-N in these systems [17] and it may be that fixation of large
amounts of N may be problematic if uncontrolled mineralisation in the warm, wet tropics
then leads to large nitrate-leaching losses in the weeks or months following termination of
the cover crops.

5. Conclusions

The hypothesis that mixed-species cover crops would produce more biomass than
single-species cover crops due to complementarity of resource use was not supported,
because biomass production in mixed-species plots was never greater than the highest
single-species treatment in either trial. However, mixed-species cover crops were highly
weed suppressive and the inclusion of multiple species mitigated the risk of failure of any
given species in a particular season. Mixed-species cover crops accumulated substantial
amounts of N in aboveground biomass, but further research is warranted to investigate the
fate of cover crop N after termination in tropical environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture11070640/s1, Figure S1: Radish plants under single-species planting (top panel)
and in a mixed-species plot (bottom panel). Note yellowing of leaves consistent with nitrogen
deficiency in plants grown as a single species, Table S1: Nutrient concentrations in cover crop shoots
at termination at field trial 2 (2018–2019).

https://www.mdpi.com/article/10.3390/agriculture11070640/s1
https://www.mdpi.com/article/10.3390/agriculture11070640/s1
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